
Rails Authentication with Omniauth (Document Version 1.0)
This development guide provides login functionality using Omniauth, which allows for
authentication with third parties (e.g. Facebook, Google). Here the emphasis is on the
Identity strategy, which stores login information (including encrypted password) in the
local database. However, the Identity strategy can be swapped out to use strategies
involving third parties. This guide complements the instructions in chapter 14 of Learning
Rails 3 and uses code consistent with the approach presented there. Unlike the
presentation in chapter 14, this version makes use of customized forms for signing in and
registering. This approach is also explained in Railscast episode 304.

Installation
Installing Omniauth with the Identity strategy requires 2 gems: bcrypt-ruby and omniauth-
identity. These gems are installed by editing Gemfile so that the bcrypt-ruby line is
uncommented and the gem for omniauth-identity is added:

gem 'bcrypt-ruby', '~> 3.0.0'
gem 'omniauth-identity'

After editing this file, running bundle install at the command line will install the needed
gems.

Finally, a new file called omniauth.rb needs to be created in the config/initializers folder so
that it has the following contents:

Rails.application.config.middleware.use OmniAuth::Builder do
 provider :identity, on_failed_registration: lambda { |env|
 IdentitiesController.action(:new).call(env)
 }
 OmniAuth.config.on_failure = Proc.new { |env|
 OmniAuth::FailureEndpoint.new(env).redirect_to_failure
 }
end

When Rails starts, this line indicates that the Identity strategy should be used. It provides
additional information on what to do if the registration fails and if the login fails.

This file will need to be edited if third party login is later added.

Models
Omniauth with Identity requires two models: the Identity model and the User model. The
Identity model includes the user name and encrypted password. Consistent with the text,
the email attribute can also be added. If a third party login is used, it will be used in place of
the Identity model. The User model holds all application-dependent information about the
user. Both models can be created with the generate command:

rails g model identity name:string email:string
password_digest:string
rails g scaffold user provider:string uid:string name:string
rake db:migrate

The model file app/models/identity.rb file needs to be added so that it inherits from the
Identity class and so that it handles two virtual attributes: :password and
:password_confirmation (note that the text has typos in this statement):

class Identity < OmniAuth::Identity::Models::ActiveRecord

 attr_accessible :email, :name, :password_digest,
 :password, :password_confirmation
 validates :email, :uniqueness => true
end

Omniauth Identity uses the email address for login. The validation here ensures that there
is only one email address. You could also add additional validations to ensure that all
attributes are correctly set.

Note: the text on pp. 239 and 240 adds a create_with_omniauth method, but here we just
added the needed code to the action where the session is created.

Routing
Even though Omniauth Identity has its own routes and paths for registering users and
logging in, we will create our own. We create session routes for presenting the login form
(new), creating the session (create), ending the session (destroy) and what to do if login
fails (failure). These lines should be added to the routes.rb file:

match "/login" => "sessions#new", :as => :login
match "/auth/:provider/callback" => "sessions#create"
match "/logout" => "sessions#destroy", :as => :logout
match "/auth/failure" => "sessions#failure"

Finally, even though the Identity strategy provides routes, actions and views for creating
new identities, we will want provide our own versions. For the route, we can add all
needed routes with the resources statement in the routes.rb file:

resources :identities

Controllers
The controller for the User model has already been created with the scaffold generation.

Sessions Controller
Here we generate a controller for creating and ending sessions:

rails g controller sessions

The code for the Sessions Controller is at the end of this document.

Omniauth calls the create action for the Sessions controller if the credentials are correct.
Omniauth also puts provides user information in the request.env table stored under
“omniauth.auth”. The Sessions create action then uses this information to either retrieve
the corresponding User object (if it already exists) or creates a new User object. The id of
the User object is then stored in the session.

The destroy action performs the logout function by setting the session to nil.

Identities Controller
The Identity strategy for Omniauth automatically supports registration, but it doesn’t
support cases when registration fails (e.g. the user provides an email address that isn’t
unique). Consequently, we need to provide our own Identities controller. Enter the
following on the command line:

rails g controller identities

Fortunately, we only need to define one action in the identities controller (inside
identities_controller.rb):

def new
 @identity = env['omniauth.identity']
end

Helpers
Method definitions for helpers can be placed in the file application_controller.rb (noted at
the end of this document). With these helpers, a view can indicate who is logged in:

<%= current_user ? current_user.name : “Not logged in” %>

The following provide links to common authentication pages:
<%= link_to “Login”, login_path %>

<%= link_to “Logout”, logout_path %>

<%= link_to “Register”, new_identity_path %>

Finally, the method check_login can be used as a before_filter to require that the user is
logged in before the request goes any further.

Code for the Sessions Controller
class SessionsController < ApplicationController
 def create
 auth = request.env["omniauth.auth"]
 if (User.find_by_provider_and_uid(auth["provider"],
auth["uid"]))
 user = User.find_by_provider_and_uid(auth["provider"],
auth["uid"])
 else
 user = User.new
 user.provider = auth["provider"]
 user.uid = auth["uid"]
 user.name = auth["info"]["name"]
 user.save
 end
 session[:user_id] = user.id
 redirect_to root_url, :notice => "Welcome!"
 end

 def destroy
 session[:user_id] = nil
 redirect_to root_url, :notice => "Logged out"
 end

 def failure
 redirect_to login_path, alert: "Authentication failed, please
try again."
 end
end

Code for login form (views/sessions/new.html.erb)
<% if flash[:alert] %>
<p><%= flash[:alert] %></p>
<% end %>

<%= form_tag "/auth/identity/callback" do %>
 <div class="field">
 <%= label_tag :auth_key, "Email" %>

 <%= text_field_tag :auth_key %>
 </div>
 <div class="field">
 <%= label_tag :password %>

 <%= password_field_tag :password %>
 </div>
 <div class="actions"><%= submit_tag "Login" %></div>
<% end %>

Code for registration form (views/identities/new.html.erb)
<%= form_tag "/auth/identity/register" do %>
 <% if @identity && @identity.errors.any? %>
 <div class="error_messages">
 <h2><%= pluralize(@identity.errors.count, "error") %>
 prohibited this account from being saved:</h2>

 <% @identity.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>
 <div class="field">
 <%= label_tag :name %>

 <%= text_field_tag :name, @identity.try(:name) %>
 </div>
 <div class="field">
 <%= label_tag :email %>

 <%= text_field_tag :email, @identity.try(:email) %>
 </div>
 <div class="field">
 <%= label_tag :password %>

 <%= password_field_tag :password %>
 </div>
 <div class="field">
 <%= label_tag :password_confirmation %>

 <%= password_field_tag :password_confirmation %>
 </div>
 <div class="actions"><%= submit_tag "Register" %></div>
<% end %>

Helper definitions for application_controller.rb
helper_method :current_user

def current_user
 if session[:user_id]
 @current_user ||= User.find(session[:user_id])
 else
 @current_user = nil
 end
 end

def check_login
 unless logged_in?
 redirect_to login_path
 end
end

def logged_in?
 if session[:user_id]
 return true
 else
 return false
 end
end

	Rails Authentication with Omniauth (Document Version 1.0)
	Installation
	Models
	Routing
	Controllers
	Sessions Controller
	Identities Controller

	Helpers
	The following provide links to common authentication pages:
	Code for the Sessions Controller
	Code for login form (views/sessions/new.html.erb)
	Code for registration form (views/identities/new.html.erb)
	Helper definitions for application_controller.rb

