
Adding Users, Authentication and Limiting Access

Adding Users
Create a User model:

rails generate model User name:string password:digest
rails db:migrate

This creates a users table without any controller and views. Users will be added through the console.

Edit User model for validation:

class User < ApplicationRecord
 validates :name, presence: true, uniqueness: true
 has_secure_password
end

Before you test your user model in the console, uncomment the gem bcrypt statement in the file Gemfile in
your main application folder. Then run bundle install at the command line.

Example code for adding a user in the console:

u = User.new
u.name = “craig”
u.password = “secret”
u.save

To test authenticate method:

u.authenticate(“secret”)
u.authenticate(“guess”)

Creating a session control for login
Generate sessions controller with views:

rails generate controller Sessions new create destroy

The new.html.erb file needs a form. It also includes a possible message to handle returns to it for
incorrect login:

<% if flash[:alert] %>
 <p><%= flash[:alert] %></p>
<% end %>

<%= form_tag controller: "sessions", action: "create" do %>
 <h2>Please log in</h2>

 <div class="field">
 <%= label_tag :name, "Name:" %>
 <%= text_field_tag :name, params[:name] %>
 </div>

 <div class="field">
 <%= label_tag :password, "Password:" %>
 <%= password_field_tag :password, params[:password] %>
 </div>

 <div class="field">
 <%= submit_tag "Login" %>
 </div>
<% end %>

Modify routes.rb (in config folder) so that create takes a post request:
 post 'sessions/create'

Add code to handle controller actions:

class SessionsController < ApplicationController
 def new
 end

 def create
 user = User.find_by_name(params[:name])
 if user and user.authenticate(params[:password])
 session[:user_id] = user.id
 redirect_to airports_url
 else
 redirect_to "/sessions/new", alert: "Invalid user/password combination"
 end
 end

 def destroy
 session[:user_id] = nil
 redirect_to airports_url, notice: "Logged out"
 end
end

Limiting Access
Adding this statement and method definition in the application_controller.rb file requires that the user
logs in before any controller action is executed.

class ApplicationController < ActionController::Base
 before_action :authorize
 protect_from_forgery with: :exception

 protected
 def authorize
 if not User.find_by_id(session[:user_id])
 redirect_to "/sessions/new", notice: "Please log in"
 end
 end
end

The authorize method is applied to all controller actions, which causes a problem for the sessions
controller. You shouldn’t be required to be logged in to go to the login form! Add this statement to the
sessions controller:

class SessionsController < ApplicationController
 skip_before_action :authorize

You can also allow “whitelist” access to specific controller actions. For example, this addition to the
airports controller allows access to index and show without being logged in:

class AirportsController < ApplicationController
 skip_before_action :authorize, only: [:show, :index]

	Adding Users, Authentication and Limiting Access
	Adding Users
	Creating a session control for login
	Limiting Access

